
CXPACKET and CXCONSUMER Wait
by Steve Stedman - http://databasehealth.com/server-overview/waits-by-type/cxpacket-wait/

CXPACKET and CXCONSUMER Wait

CXCONSUMER and CXPACKET are associated with parallelism. When a query that has a cost beyond the cost
threshold for parallelism then that query will be split out to be work on by multiple cores.  This is a good thing. It
usually means that your queries are taking advantage of multiple cores.

Reducing your max degree of parallelism setting is not necessarily a good thing to do unless it is excessive. You
might find documentation that says you can get rid of CXPACKET by setting the MAXDOP setting to 1. This does
indeed eliminate all CXPACKET waits, however setting MAXDOP to 1 turns off all parallel processing on your
SQL Server, which will likely slow down the execution of many queries. DO NOT DO THIS.

The CXCONSUMER wait type was added in 2016 SP2 and 2017 RTM CU3.

Suggestion filter out or ignore CXCONSUMER then focus on the CXPACKET waits where the real issues are.
CXCONSUMER can be safely ignored, where if CXPACKET is excessive you may want to look into the queries
causing the CXPACKET waits.

Some common ways to reduce CXPACKET and effectively CXCONSUER waits are:

                               page 1 / 2

http://databasehealth.com/wp-content/uploads/2022/02/cxpacket-and-cxconsumer.png


CXPACKET and CXCONSUMER Wait
by Steve Stedman - http://databasehealth.com/server-overview/waits-by-type/cxpacket-wait/

Adding Missing indexes
Relieving CPU pressure, but adding more or faster cores, or fixing inefficient queries.
Memory pressure. Adding memory, or reducing memory needed for inefficient queries.
Out of data statistics causing SQL Server to incorrectly divide the query into equal sized sets. This is a
pretty common cause.
Fragmented indexes causing slower IO speeds that impact one thread over the others. Used to be more of
an issue on slower storage, but with faster storage not as much of an issue.
Missing search predicates. Adding more search predicates on your where clause or a join will help reduce
the amount of data fed into a query.
Queries that are forcing a row by row processing of results rather than using sets.
Client applications not efficiently processing result sets.
Nested views can also be a problem. For instance on view calling another and then another can throw off
the parameters and lead to an inefficient plan.

Focus on the CXPACKET waits on not on the CXCONSUMER waits. Reduce CXPACKET waits by improving
query performance not just by reducing the number of cores.

Powered by TCPDF (www.tcpdf.org)

                               page 2 / 2

http://www.tcpdf.org

